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Abstract

Quantum dots (QDs) are a novel class of inorganic fluorophore which are gaining widespread recognition as a result of their

exceptional photophysical properties. They are rapidly being applied to existing and emerging technologies, and could have an important

role in many areas. Significant challenges remain, however, which must be understood and more fully defined before they can be widely

validated.

This review provides on overview of QD technology, covering QD characteristics, synthesis methods, and the applications in which

they have been put to use. The influence of synthesis methods on QD characteristics and their subsequent suitability to different

applications is discussed, and a broad outline of the technologies into which they have been incorporated is presented, and the relative

merits and weaknesses of their incorporation are evaluated. The potential for further development, and inclusion in other technologies is

also discussed, and barriers restricting further progress specified, particularly with regard to the poorly understood surface chemistry of

QDs, the potential for alteration of function of biological molecules when complexed with QDs, and on a larger scale the significant

potential for cytotoxicity both in vitro and in vivo.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantum dots (QDs) are nanometer-scale semiconduc-
tor crystals composed of groups II–VI or III–V elements,
and are defined as particles with physical dimensions
smaller than the exciton Bohr radius [1]. When a photon of
visible light hits such a semiconductor, some of their
electrons are excited into higher energy states. When they
return to their ground state, a photon of a frequency
characteristic of that material is emitted. Metal and
semiconductor nanoparticles in the size range of 2–6 nm
are of considerable interest, due to their dimensional
similarities with biological macromolecules (e.g. nucleic
acids and proteins) [1]. This review aims to explore the
properties of QDs, and the role they may take in advanced
medical imaging.
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Fig. 1. Excitation (a) and emission (b) profiles of rhodamine 6G and

CdSe QDs. The QD emission spectrum is nearly symmetrical and much

narrower in peak width while its excitation profile is broad and

continuous, meaning that QDs can be efficiently excited at any wavelength

shorter than �530 nm. By contrast, the organic dye rhodamine 6G has a

narrow excitation profile and broad emission spectrum [1] (permission

obtained).
2. Optical properties of quantum dots

Quantum confinement effects give rise to unique optical
and electronic properties in QDs, giving them numerous
advantages over current fluorophores, such as organic
dyes, fluorescent proteins and lanthanide chelates [2].
Properties that particularly influence fluorophore beha-
viour, and therefore applicability to different situations,
include the width of the excitation spectrum, the width of
the emission spectrum, photostability, and the decay
lifetime.

Conventional dyes suffer from narrow excitation spec-
tra, requiring excitation by light of a specific wavelength,
which varies between particular dyes. QDs have broad
absorption spectra, allowing excitation by a wide range of
wavelengths, a property which may be exploited to
simultaneously excite multiple different coloured QDs
using a single wavelength (Fig. 1) [1,3]. Conventional dyes
also have broad emission spectra, meaning the spectra of
different dyes may overlap to a large extent. This limits the
number of fluorescent probes that may be used to tag
different biological molecules and be spectrally resolved
simultaneously. In contrast, QDs have narrow emission
spectra, which can be controlled in a relatively simple
manner by variation of core size and composition, and
through variation of surface coatings. They can be
engineered to emit light at a variety of precise wavelengths
from ultraviolet (UV) to infrared (IR). The narrow
emission and broad absorption spectra of QDs makes
them well suited to multiplexed imaging, in which multiple
colours and intensities are combined to encode genes,
proteins and small-molecule libraries [3,12,13]. It has been
suggested that a realistic scheme using 5–6 colours with 6
intensity levels could be used to yield approximately
10,000–40,000 different recognisable codes [3]. In combina-
tion with their good photostability, which is discussed
below, they may provide the opportunity to monitor the
long-term interactions of multiple-labelled biological mo-
lecules in cells.
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Photostability is a critical feature in most fluorescence
applications, and is an area in which QDs have singular
advantage. Unlike organic fluorophores which bleach after
only a few minutes on exposure to light, QDs are extremely
stable and can undergo repeated cycles of excitation and
fluorescence for hours with a high level of brightness and
photobleaching threshold [3,4]. QDs have been shown to
be more photostable than a number of organic dyes [5,6],
including Alexa488, reported to be the most stable organic
dye [7]. Dihydrolipoic acid (DHLA)-capped cadmium
selenide-zinc sulfide (CdSe-ZnS) QDs showed no loss in
intensity after 14 h, and were nearly 100 times as stable as,
and also 20 times as bright as, rhodamine 6G [6].
As previously discussed, this may be exploited in situa-
tions where long-term monitoring of labelled substances
is required, and is an area in which QDs may find
particular use.

QDs also have a long fluorescent lifetime after excita-
tion, which may be taken advantage of in time-gated
imaging. The fast fluorescence emission of organic dyes
upon excitation (o5 ns) coincides closely with short-lived
autofluorescence background from many naturally occur-
ring species, reducing the signal-to-noise ratio. Conversely,
QDs emit light with a decay time in the order of a few tens
of nanoseconds (30–100 ns) at room temperature, which is
slower than the autofluorescence background decay,
but fast enough to maintain a high photon turnover rate
(Fig. 2) [8,9]. In time-gated analysis, photons hitting in the
first few nanoseconds are disregarded to decrease back-
ground noise and increase sensitivity. The usefulness of this
has been shown in producing images of 3T3 mouse
fibroblasts with a high signal-to-background ratio [10],
and in following erbB1 and erbB3 receptors. In this case,
Fig. 2. Time dependence of the fluorescence intensity of silanised

nanocrystals and rhodamine 6G at 488 nm. The nanocrystals exhibit a

stable emission for at least 4 h, while the dye bleaches after 10min, colours

correspond to nanocrystal emission, R6G is in black [8] (permission

obtained).
time-gating allowed distinction to be made between erbB3
receptors labelled with citrine and erbB1 receptors labelled
with QDs, even though they could not be spectrally
resolved [11].

3. Synthesis and surface chemistry

QD synthesis can be tailored to specific requirements,
with core, shell and coating characteristics all affecting
photochemical properties. QDs may be manufactured with
diameters from a few nanometers to a few micrometers,
and size distribution can be controlled within 2% [14] using
precise growth techniques, involving high annealing
temperatures [15]. Choice of shell and coating are gaining
particular importance, as the shell stabilises the nanocrystal
and to some extent alters the photophysical properties,
whilst the coating confers properties to the QD which allow
its incorporation into a desired application.
Bare core nanocrystals have proven impractical for two

reasons. Firstly, the crystalline structure of the nanopar-
ticle lends itself to imperfections [15], which results in
emission irregularities, particularly blinking, in which
single QDs switch between fluorescent and non-fluorescent
states despite continuous illumination [16]. Secondly, the
cores are highly reactive [15] due to their large surface
area:volume ratio, resulting in a very unstable structure
which is particularly prone to photochemical degradation.
Capping core nanocrystals with ZnS has been shown to
increase stability and performance, producing QDs with
improved luminescence, higher photochemical stability and
higher quantum yields at room temperature [17,18].
However, ZnS capping alone is not sufficient to stabilise
the core, particularly in biological solutions, but a
serendipitous byproduct of modification to render QDs
biologically compatible, particularly with polyethylene
glycol (PEG), is an increase in stability and a reduction
in non-specific adsorption.
Solubilisation of QDs is essential for many biological

applications, but presents a significant challenge. Non-
water-soluble QDs can be grown easily in hydrophobic
inorganic solvents, but solubilisation requires sophisticated
surface chemistry alteration. Current methods for solubi-
lisation without affecting key properties are mostly based
on exchange of the original hydrophobic surfactant layer
with a hydrophilic one [8,19,20], or the addition of a second
layer such as the amphiphilic molecule cyclodextrin [21],
which may also contain another functional group. Chit-
osan, a natural polymer with one amino group and two
hydroxyl groups, has been used for intracellular delivery of
specific molecules [22,23], and can be attached to the QD
surface. Other methods for increasing solubility include
encapsulation in phospholipid micelles [24], addition of
dithiothreitol [25], organic dendron [26,27], oligomeric
ligands [20], and the addition of a second layer of
poly(maleicanhydride alt-1-tetradecene) to the QD’s sur-
face. Silica and mercaptopropionic acid (MPA) are also
commonly used [8,19], and allow bioconjugation to ligands
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of interest. MPA achieves this through carboxyl groups,
and silica through the presence of thiol groups on its
surface. Fig. 3 lists conjugation schemes commonly used
for attaching proteins to QDs [28]. The colloidal properties
of solubilised nanoparticles, including the charge and
hydrodynamic status, will be altered depending on the
method used, meaning that the solubilisation strategy
will need to be tailored according to the biological system
being used [29]. The increase in diameter brought about
by such modifications, and conjugation with biomole-
cules, may make intracellular delivery more difficult,
and could increase toxicity [30]. Another challenge is
that there is no technique which consistently allows
preparation of QDs with control over the ratio of
biomolecules per QD and their orientation on the sur-
face. Current strategy (based on modifying COOH groups
on the QD surface for covalent attachment of amine
groups) is limited by problems of reproducibility and
aggregation [31].

Although QDs have proven to be more photostable than
conventional organic dyes in some protocols, a substantial
loss of fluorescence has been noted upon injection into
tissues and whole animals, and in ionic solutions [32–36].
This signal loss has been suggested to be due to slow
degradation of surface ligands and coating, or to factors
absorbed to the surface when subjected to body fluids,
leading to surface defects and fluorescence quenching
[17,37]. Some important technical problems remain,
particularly in defining and characterising the surface
coating chemistry. This must be controlled to develop a
coating which provides minimal non-specific binding,
whilst maintaining stability, avoiding oxidisation and
withstanding salt concentration in cells. It must also
maintain strong fluorescence without bleaching, quench-
ing, or blinking.
 Bifunctional linkage

 Silanization

 Hydrophobic attraction

S Si-O-Si
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Fig. 3. A schematic illustrating different approaches of conjugation of QDs to

for linking QDs to biomolecules. (b) TOPO-capped QDs bound to a modifie

bioconjugation using a mercaptosilane compound. (d) Positively charged bio

(e) Incorporation of QDs into microbeads and nanobeads [1] (permission obt
4. Cytotoxicity

Cytotoxicity of QDs has been observed in a large
number of in vitro studies [28,38–42], affecting cell growth
and viability [43]. The extent of cytotoxicity has been found
to be dependent upon a number of factors including size,
capping materials, colour, dose of QDs, surface chemistry,
coating bioactivity and processing parameters [42,44,45].
Even if not inducing significant alterations in cell
physiology, QDs can produce subtle alterations of function
which may affect the quality of data derived from their use
[41,46,47].
A number of mechanisms have been postulated to be

responsible for QD cytotoxicity. These include desorption
of free Cd (QD core degradation) [28,38], free radical
formation, and interaction of QDs with intracellular
components. Examination of QD toxicity in a hepatocyte
culture model showed that exposure of core CdSe to an
oxidative environment causes decomposition and de-
sorption of Cd ions. Such exposure during synthesis and
processing played an important role in subsequent toxicity.
Addition of a silica (SiO2) and ZnS shell can reduce
oxidation, but is unable to eliminate it, particularly under
concomitant exposure to UV light [48]. The addition of
ligand shells has also been observed to reduce Cd
desorption, but again is unable to eliminate it under
oxidative conditions, and ligand addition brings its own
attendant problems as will be discussed.
The generation of free radicals, particularly reactive

oxygen species has also been seen to contribute to toxicity
[40,49,50]. Nicking of DNA was seen both in DNA
incubated with QDs in the dark, and under UV exposure.
This was attributed to photo-generated and surface
generated free radical exposure [51]. CdSe core QDs
induced apoptosis in neuroblastoma cells by activation of
 Nanobeads

-CH2-CO-NH-

biomolecule

biomolecule

+
+
+

 Electrostatic attraction

+

biomolecules: (a) Use of a bifunctional ligand such as mercaptoacetic acid

d acrylic acid polymer by hydrophobic forces. (c) QD solubilisation and

molecules linked to negatively charged QDs by electrostatic attraction.

ained).
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a number of apoptotic pathways, and downregulation of
survival signalling molecules [52]. The composition of the
core, and also the colour of the QD (a reflection of core
size) appear to influence toxicity [40]. These studies also
observed that addition of a ZnS shell was beneficial, and
reduced free radical generation; however the DNA nicking
observed was the result of incubation with CdSe/ZnS QDs
with a biotin ligand. Whether or not the generation of free
radicals is dependent on Cd desorption is unclear, but is a
possibility given that Cd has been shown to generate
free radicals [53], and that a similar reduction in free
radical generation as Cd desorption is seen on addition of a
ZnS shell.

In addition to the effects of the QD core, ligands added
to render the probe biologically active may have toxic
effects on cells. Mercaptopropionic acid (MPA) and
mercaptoacetic acid, which are commonly used for
solubilisation, have both been shown to be mildly cytotoxic
[39]. MUA, cysteamine and TOPO have all been shown to
have the ability to damage DNA in the absence of the QD
core [54]. PEGylated QDs have been shown to have
reduced cytotoxicity, but modification of these to produce
PEG-amine for biological activity renders them cytotoxic
once again [55].

Unfortunately, interpretation of information on cyto-
toxicity is difficult as a result of differences in cellular
handling of QDs and the possible contribution of
unexpected factors to toxicity. The reduced cytotoxicity
seen with QD-PEG compared with unmodified QDs has
been found to be related to reduced uptake of these
modified QDs, and not necessarily to an inherently reduced
toxicity [56]. The way in which QDs are handled by cells
after uptake is also variable, and different intracellular
fates are likely to contribute to different toxicity. Handling
has been shown to be affected by size, colour and coating
[53], and different handling has even been observed
between QDs with the same coating but different emission
wavelengths. With the limited data accumulated so far it is
very difficult to estimate the true extent of QD cytotoxicity,
which factors contribute, and the effects they may have.

Groups III–V QDs may provide a more stable alter-
native to groups II–VI QDs due to the presence of a
covalent, rather than an ionic, bond, and have been
reported to have lower cytotoxicity [57]. However these
QDs are difficult to prepare on a competitive time scale,
and tend to have much lower quantum efficiencies,
meaning uptake has been slow. Data relating to cytotoxi-
city is understandably much more limited for these QDs,
making it difficult to draw firm conclusions, and comment
either way.

5. Biological applications of QDs

5.1. Fluorescence resonance energy transfer analysis

Fluorescence resonance energy transfer (FRET) involves
the transfer of fluorescence energy from a donor particle to
an acceptor particle whenever the distance between the
donor and the acceptor is smaller than a critical radius,
known as the Förster radius [58]. This leads to a reduction
in the donor’s emission and excited state lifetime, and an
increase in the acceptor’s emission intensity. FRET is
suited to measuring changes in distance, rather than
absolute distances [59], making it appropriate for measur-
ing protein conformational changes [60], monitoring
protein interactions [61] and assaying of enzyme activity
[62]. Several groups have attempted to use QDs in FRET
technologies [63], particularly when conjugated to biologi-
cal molecules [64], including antibodies [65], for use in
immunoassays.
QD-FRET has been used for monitoring protein

interactions in the Holliday Junction [66], an intermediate
in the recombination of DNA that undergoes conforma-
tional change on addition of Mg2+ ions [67]. Using QD585
as a donor on one arm of the DNA, and Cy5 as an
acceptor on a perpendicular arm, movement of the arms on
addition of Mg2+ could be detected as a change in the
emission of both donor and acceptor. However, the
changes were detected with considerably less efficiency
than with the equivalent Cy3/Cy5 FRET.
Quantitative maltose sensing has provided an example of

how QDs might play a role in enzyme assays. In a recent
study, QDs conjugated to maltose binding protein (MBP)
allowed binding of either maltose or a quenching molecule
[68]. The quenching molecule, with a binding affinity
similar to that of maltose, was readily displaced on
addition of maltose, and a concentration-dependent
increase in luminescence was observed. Several studies
have exploited QD-FRET for imaging activity of proteases
[69–72]. For this application a QD-probe conjugate is
bound to a quencher probe by a peptide sequence which
is recognised by a protease, in which state the fluorophore
is quenched. On cleavage of the two molecules by a
protease, emission is restored, allowing its activity to be
visualised. Compared to previous results using organic
fluorophores [73,74], QDs gave an increased luminescence
of 52% over 47 h after incubation with a collagenase [69].
Subsequent studies have shown that QD-FRET can detect
activity of caspase-1, thrombin and chymotrypsin [71],
trypsin [75], and b-lactamase. A QD-FRET assay of
collagenase has also been demonstrated to be able to
distinguish between normal and cancerous breast cells [72].
A number of issues may affect the use of QDs in FRET

applications. The physical dimensions of QDs, particularly
after capping and the addition of further shells, such as
DHLA, make close approach to the QD core difficult,
reducing FRET efficiency. This may be partially overcome
by the addition of a relay acceptor, but this reduces the
overall efficiency, and may involve structural alteration to
proteins to allow their incorporation, changing the
physicochemical properties of the substances being used
[68,76]. Peptide accessibility is also a concern, as in order to
produce efficient probes, multiple energy acceptors need to
be conjugated to a central QD, which introduces steric
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hindrance to substrate accessibility for proteases [69].
Environmental conditions are also likely to have an effect
on FRET changes, as it has been shown that fluorescence
intensity in FRET applications changes as a function of
both pH and ionic strength of the solution in which the
system is placed. Displacement of peptide-dye conjugates
from a central QD has also been reported, particularly
when larger biomolecules are being used [75]. It should be
noted that in all the above studies QDs have been used as
energy donors. A comprehensive examination of the
subject concludes that QDs make unsuitable energy
acceptors for FRET applications [77].

5.2. Gene technology

A number of studies have shown that QD-conjugated
oligonucleotide sequences (attached via surface carboxylic
acid groups) may be targeted to bind with DNA or mRNA
[25,78]. Comparison of QD performance against Texas
Red and Fluorescein, traditional organic fluorophores, in
hybridisation using total DNA as a probe gave mixed
results. The optical qualities of QDs were superior,
showing up to 59% greater photostability and 11-fold
greater signal intensity, and QD probes could be used to
detect the clinically useful ERBB2/HER2/neu locus, which
is relevant to breast cancer. However, staining in centro-
meric regions, which was seen using organic fluorophores,
was noted to be deficient using QDs, and fluctuation of
signal intensity was observed, thought to be the result of
blinking [79]. Further, attachment of oligonucleotides to
the QD surface led to poor long-term stability. Oligonu-
cleotide derivatised QDs were used, as building free
carboxylic acid groups on the QD surface led to non-
specific binding to target cells, making them far less useful
than conventional organic fluorophore probes.

Using red, green and blue QDs in a number of
combinations, it has been demonstrated that specific
labelling and identification of target sequences of DNA
can be achieved [3]. This was exploited by using QD
microbeads for an assay of single nucleotide polymorphism
(SNP). Authentic genomic samples, rather than clean
model oligonucleotides, were amplified, producing bioti-
nylated amplicons. These were subsequently incubated
with QDbead-labelled oligonucleotides and then with
streptavidin-Cy5, which interacts with the biotin on the
amplicons. The combination of Cy5 and QD signals
showed that hybridisation had occurred. Using this
method, call rates of 100%, and 100% concordance with
TaqMan in-house assays for 940 genotypes, were achieved
[80]. These results suggest that QDs could be used to
produce more efficient assays, requiring smaller quantities
of DNA, to be developed. Others have also attempted to
detect single point mutations using a similar protocol with
favourable results [81]. A theoretical problem with such an
assay is the effect that blinking might have on the intensity
readings obtained. This was not addressed in either of these
studies.
QD-FRET has also found a place in genetic applica-
tions. Use of QDs for determining the dynamics of
telomerisation and DNA replication has been reported
[82]. One group report the design of a DNA nanosensor
which sandwiches a target sequence between a biotinylated
capture probe and a reporter probe bound to Cy5. A target
thus labelled binds to QD-streptavidin particles, with
several oligonucleotides binding to each particle (Fig. 4)
[83]. The efficiency of FRET when multiple molecules are
bound is greater than when single molecules are bound
[79,84], up to a maximum of 54 found in this study. The
selection of QD650 and Cy5 as a donor–acceptor pair
allowed negligible crosstalk and selection of a wavelength
near the minimum of the Cy5 absorption spectrum.
Compared to molecular beacons, which are commonly
used in DNA hybridisation applications, this method
produced a much higher sensing responsiveness at almost
every target concentration tested. At 0.96 nM it was
approximately 100-fold greater, and could detect signal
at 4.8 fM, compared with 0.48 pM. Using an oligonucleo-
tide ligation assay in the KRAS gene, mutation of
which has been identified as an early event in tumorigenesis
in ovarian serous borderline tumours [85], it was possi-
ble to discriminate between heterozygous and homozygous
wild types with good efficiency. The authors of this
study suggest that the detection limits of these sensors
obviates the need for pre-target amplification and can be
extended to non-DNA targets such as proteins and
peptides.
Strong quenching (8379% [86] and 85% [34]) using

gold-conjugated DNA with QDs has also been shown
[34,86], but the strength of quenching is affected by the
interparticle distance, and with short interparticle distances
additional non-radiative interactions affect quenching. It
has also been noted that emission yield over time may be
significantly reduced when QD-DNA complexes are
complexed with clean oligonucleotides (i.e. those without
Au attached in which no quenching should have occurred),
with a greater than 50% decline being reported at 2.5 h.
Although the reduction in yield is less than that seen
with Au quenching, it nevertheless represents an impor-
tant reduction in accuracy. Unfortunately, no data was
given on emission yield at 1.5 h, the time at which the result
of Au quenching was measured. The authors suggest
that the reduced yield is due to the use of an ionic solution,
as this has previously been observed in QDs in ionic
solutions [35].
In addition to their role in DNA technology, QDs

may find use in RNA technologies, in detection of mRNA
molecules using ISH and in combination with siRNA
in RNA interference applications. QDs have been success-
fully used in ISH techniques to study the expression of
specific mRNA transcripts in mouse midbrain sections [87].
Labelling of up to four different mRNA transcripts
in neurons in appropriate areas of the midbrain was
possible, producing better results than the most sensitive
organic fluorophore. Combining in situ hybridisation
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Fig. 4. Schematic of single-QD-based DNA nanosensors. (a) Conceptual scheme showing the formation of a nanosensor assembly in the presence of

targets. (b) Fluorescence emission from Cy5 on illumination on QD caused by FRET between Cy5 acceptors and a QD donor in a nanosensor assembly

[83] (permission obtained).
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techniques with immunohistochemistry allowed visualisa-
tion of the localisation of growth hormone and prolactin
proteins in relation to their mRNA. Biotinylated oligo-
nucleotide probes provided an attachment site for strepta-
vidin-coated QD605 to target the mRNA molecules
whilst QD685 conjugated to anti-rabbit IgG targeted
the protein molecules labelled by immunohistochemical
techniques. Using this protocol, mRNA and protein
molecules could be distinguished, and the localisation of
the molecules in relation to each other could be visualised
in three dimensions, which is an advantage over current
EM methods [88].

QDs have also found a use in RNA interference
applications, where they allow monitoring of the extent
of gene knockdown in a cell by measuring brightness [89].
RNA interference has become an important tool for
determination of gene function, but inefficient and hetero-
geneous delivery of siRNA often observed in cell culture
causes variable levels of gene silencing [15]. The ability to
easily select cells with high levels of gene silencing is likely
to be extremely useful if it proves feasible.
5.3. Fluorescent labelling of cellular proteins

External labelling of cells with QDs has proven to be
relatively simple, but intracellular delivery adds a level of
difficulty. Several methods have been used to deliver QDs
to the cytoplasm for staining of intracellular structures, but
so far these have not been particularly successful. Micro-
injection techniques have been used to label xenopus [24]
and zebrafish [90] embryos, producing pancytoplasmic
labelling, but this is a very laborious task, which rules out
high volume analysis. QD uptake into cells via both
endocytic [91,92] and non-endocytic pathways has also
been demonstrated, but results in only endosomal localisa-
tion. Two novel approaches have shown pancytoplasmic
labelling, by conjugation with Tat protein, and by
encapsulation in cholesterol-bearing pullulan (CHP) mod-
ified with amine groups [93]. Coating with a silica shell may
also prove useful. An excellent report by Derfus et al. [94]
compares some of the most commonly used methodologies.
Labelling of F-actin fibres demonstrated that QDs could

be used to label proteins where preservation of enzyme
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activity was desirable [47]. Streptavidin-coated QDs were
used to label individual isolated biotinylated F-actin fibres.
However, compared with Alexa488 (an organic fluoro-
phore), a smaller proportion of labelled filaments were
motile. Intracellular labelling of these filaments has also
been shown to be possible (Fig. 5) [5]. QDs have also been
used to label mortalin, and p-glycoprotein, molecules
which are important in tumour cells [95,96]. Labelling with
QDs was much more photostable than with organic dyes,
with a 420-fold increase over Alexa488. Advantage was
taken of this to image three-dimensionally the localisation
of p-glycoprotein, with the long fluorescence lifetime
allowing successive z-sections to be imaged [96].

A number of groups report multiple colour labelling of
different intracellular structures [91,97]. Simultaneous
labelling of nuclear structures and actin filaments with
QDs of two different colours was demonstrated by one
group, but variable labelling of nuclear structures was
observed. Another group labelled mitochondria and
nuclear structures, producing distinct red labelling of the
nucleus and green labelling of the mitochondria. Single-
colour labelling of Her2 has also been shown to be
possible, and is of particular note, given that expression of
this can be used as a predictive and prognostic marker for
breast cancer. Specific labelling of both QD630 and QD535
to the receptor could be seen, and was possible even in fixed
tissue specimens [5]. There are, however, limits on the
number of independent signals achievable for multiplexed
immunoassays. Emission spectra separated by 15 nm in
Fig. 5. Actin filaments stained with biotinylated phalloidin and QD

535–streptavidin, and nuclei counterstained with Hoechst 33342 blue dye

in mouse 3T3 fibroblasts [5] (permission obtained).
their intensity maxima (where the distributions have similar
full-width at half-maximum, FWHM �25–35 nm) can be
resolved.
QDs have also been used in tyramide signal amplifica-

tion (TSA), which uses horseradish peroxidase to attach
tyramide to antibody targets in order to facilitate antibody
binding. Use of this method allows increased fluorescence
intensity and assay sensitivity [98]. Combination of QDs
with electron microscopy techniques allowed labelling of
nuclear promyelocytic leukemia protein (PML) and cAMP
response element binding protein (CREB), and also made
it possible to label multiple targets using a combination of
QD and gold particles to show localisation of the two
targets [99].
The photostability and advantageous signal-to-noise

ratio achievable with QDs means they could be ideal
probes for single molecule tracking studies. A number of
groups have attempted to use QDs for following the
dynamics of cell surface receptors involved in cell signal-
ling. Early attempts using QDs to label serotonin
transporters were limited by weak potency and an inability
to discriminate between serotonin receptors and transpor-
ters [100]. However, QDs have subsequently been used
more successfully to visualise and track the movements of
glycine receptors [101], erb/HER receptors [102], AMPA
receptors [103], GABAc receptors [104] and TrkA receptors
in the interior of neural PC12 cells [105]. In these studies
the dynamics of the receptors could be tracked, and were
an improvement over organic fluorophores for long-term
tracking. One group studying receptor-mediated signal
transduction in erbB/HER receptors were able to follow
the receptors during endocytosis, revealing a previously
unknown retrograde transport mechanism [102]. In an-
other study, QDs were used to track the movements of
receptors within neural cells to demonstrate previously
unknown receptor fates [105]. However, two groups
reported that some receptors, which can be labelled with
organic fluorophores, are inaccessible to QDs, probably the
result of the large size of QD complexes in comparison
[101,103]. This was despite the use of a novel targeting
method in one, which reduced the size of the overall
receptor-QD complex by replacing the anti-AMPA anti-
body with a small acceptor peptide [103]. The large size of
QD conjugates when attached to target molecules may also
interfere with the normal functioning of that protein,
although no evidence of this was found when imaging
TrkA receptors [105]. The optical superiority of QDs is
likely to ensure their place in this area of research, but due
acknowledgement must be given to the possible inaccura-
cies that may be inherent in their use.

5.4. Cell tracking

In a landmark study, QDs encapsulated in phospholipid
micelles were used to label individual blastomeres in
xenopus embryos [24]. These encapsulated QDs were stable
in vivo, did not become aggregated and were able to label
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Fig. 6. Dual-color image of QD 605-labeled C. parvum (red) and QD 565-

labeled G. lamblia (green) [107] (permission obtained).
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all cell types in the embryo. At the levels required for
fluorescence visualisation (2� 109/cell) the QD-micelles
were not toxic to the cells, but concentrations of 5� 109/
cell did produce abnormalities. The QDs were confined to
the injected cell and its progeny, though unintended
translocation to the nucleus was observed at a particular
stage in the development of the embryo. Another group
labelling Dictyostelium discoideum found that cell labelling
for over a week was possible, and that QD labelling had no
detectable effects on cell morphology or physiology [92].
Differently coloured QDs could also be used to label
different populations in order to investigate the effect of
starvation on D. discoideum development. These cells could
be tracked for long periods with no discernible fluorescence
loss. Zebrafish embryo blastomeres labelled with QDs and
co-injected with CFP, a traditionally used lineage marker,
showed passing of QDs to daughter cells in most cases,
although some cells displaying CFP fluorescence did not
show QD fluorescence. This was suggested to be due to
aggregation of QDs, leading to unequal inheritance by
daughter cells [90]. This is a recognised problem, along
with fluorescence loss and instability in the QD structure in
biological solutions [24].

5.5. Pathogen and toxin detection

QDs may find practical application for the detection of
pathogens and toxins, and in defining their characteristics,
including virulence. A number of studies have produced
good results, and the opportunity for multiplexed imaging
is particularly useful in this area. Several different
pathogens have been targeted so far, including Cryptospor-

idium parvum and Giardia lamblia [106,107], Escherichia

coli 0157:H7 and Salmonella Typhi [108] and Listeria

monocytogenes. Simultaneous multiplexed labelling of both
C. parvum and G. lamblia using immunofluorescent
staining methods with QD fluorophores (Fig. 6) produced
a good signal-to-noise ratio of 17, with better photostabil-
ity and brightness compared with two commonly used
commercial staining kits [107]. However, one study found
that the QD-based assay was not as sensitive as ELISA-
based techniques [109].

QDs conjugated to wheat germ agglutinin and transfer-
rin have been used to label both bacterial and fungal
populations. [110] Transferrin-bound QDs could provide a
test for pathogenic virulence, as the presence of human
transferrin is strongly correlated with virulence [111]. In
this study, only pathogenic strains of staphylococci were
labelled with transferrin-conjugated QDs, suggesting this
could be used as a rapid test for invasive staphylococci.
QDs have also been used for viral detection [112,113].
Using immunofluorescent techniques to detect respiratory
syncytial virus (RSV) F-protein, it was possible to quanti-
tatively analyse differences in F-protein expression between
strains [113]. Application of in situ hybridisation techniques
using QDs to the detection of Hepatitis B and C viruses has
also been demonstrated. Using printed microarrays of
sequences complementary to Hepatitis B and C virus
genomes and also to p53 conjugated with QDs, multiplexed
detection of HBV and HCV with a signal-to-nose ratio
up to 150 was possible and required a short incubation
time [112].
A number of studies have used QDs for detection of

toxins [114–116]. QD immunofluorescence was used to
label staphylococcal enterotoxin B (SEB), cholera toxin
(CT), Shiga-like toxin 1 (SLT-1) and ricin. This proof-of-
principle study showed specific detection of toxins could be
achieved at concentrations as low as 3 ng/ml for SEB.
Multiplexed detection using a mixture of the toxins showed
that all four toxins could be detected. However, problems
with cross-reactivity and possible non-specific binding were
seen. Whether this was due to problems with the antibody,
or the result of the incorporation of QDs requires further
investigation.

5.6. In vivo animal imaging

At present there is relatively little work published on the
use of QDs for whole body imaging. Whole-animal
imaging presents a number of difficulties, the most
important of which is the potential for toxicity in both
animal and human applications. Much more work will
need to be done before the usefulness or otherwise of QDs
in this area can be established. Imaging in animal subjects
introduces complications due to absorbance and scatter by
tissues, and autofluorescence upon their excitation. Tissue
absorbance and scatter is much lower in the near-infrared
region (700–1000 nm) [117], so engineering of QDs to
fluoresce in the NIR region can be used to increase the
signal received. Tissue autofluorescence is also dependent
on the wavelength of the excitation light [118]. As QDs
have broad absorption spectra, a wavelength which
minimises tissue autofluorescence can be chosen. Some
studies have also investigated self-illuminating QDs [119].
These work by bioluminescence resonance energy transfer,
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which acts in a manner similar to FRET except that in this
system a bioluminescent molecule, such as a luciferase, acts
as an energy donor upon activation by an enzyme
(coelenterazine in the case of luciferase), which excites
fluorescence in the QD. This has the advantage of
eliminating the need for excitation light, and reduces tissue
autofluorescence and background noise, but suffers from
the disadvantages that it requires the introduction of two
potentially immunogenic substances, relies on appropriate
biodistribution of the enzyme, and given the large size of
the complex, extravasation and penetration into many
tissues, organs or tumours may be problematic [120].
Comparison between organic fluorophores and non-
bioluminescent QDs has not yet been made, but these
novel probes were visible in nude mouse models. Another
important consideration for in vivo applications is clear-
ance from the bloodstream. QDs, along with other
nanoparticles, suffer from extensive reticuloendothelial
uptake, which reduces the blood concentration [121].
Coating with PEG, which can prevent the opsonin–nano-
particle interaction, has been reported to increase the
circulating lifetime of QDs, but does not eliminate non-
specific uptake [32,122–124].

Several groups report homing of QDs to biological
targets in vivo. Targets have included tumours
[32,33,125,126], vasculature in several different tissue
targets [117], and also a number of targets in necropsy
and tissue sections after in vivo injection of QDs [127]. One
group used antibody-conjugated, PEG-encapsulated QDs
to target a prostate-specific membrane antigen [33], a cell
surface marker for prostate epithelium, which is also
expressed in the neovasculature of a large number of non-
prostatic primary carcinomas [128]. The particles bound
specifically to human prostate tumour xenografts, and
produced fluorescent signals significantly brighter than
those produced by green fluorescent protein (GFP), which
has previously been used for in vivo cancer imaging
[129,130]. Another group report the synthesis of a
tumour-specific chimera phage incorporating a streptavi-
din-binding site to which QDs may be attached, which is
able to specifically target tumours [126]. Labelling of
tumour vasculature has been shown to be possible,
including multiplexed imaging of both vasculature and
lymphatics in an MDA-MB-435 xenograft tumour system,
which was evidenced by colocalisation with blood vessel
and lymphatic markers. However, tissue penetration was
reduced compared with organic fluorophores both in vitro

and in vivo, which is likely to be the result of the relatively
large size of the QD complex, and loss of luminescence was
seen resulting from instability when transferred to living
cells and tissues [32].

Imaging of vasculature in normal tissues has also been
attempted. Using Type II QDs (with a CdTe core and also
a CdSe shell) intraoperatively, coronary vasculature could
be visualised with a signal-to-noise ratio of 5:1 under
excitation with light similar to that which might be used to
illuminate a surgical field [117]. Imaging of rat coronary
vasculature was possible at a depth of 1.5–2.0mm both
before and after thoracotomy with sufficient resolution to
allow identification of named blood vessels (Fig. 7) [125].
Imaging through intact skin and adipose tissue in mice
allowed visualisation of vasculature at the base of the
dermis 900 mm deep, and it was also possible to image
capillaries through 250 mm of adipose tissue, producing
images with greater detail at a greater depth using less
power than needed for FITC-dextran, a traditional organic
fluorophore (Fig. 7a) [131].
QDs could provide an alternative to traditional dyes in

sentinel lymph node (SLN) mapping. SLN mapping allows
the identification of the first node in the lymphatic basin
into which a primary tumour drains, the status of which
reflects the status of the entire basin [132]. Current practice
involves extensive lymphadenectomy in many cancers,
leading to significant morbidity. By removing only the
SLN, this morbidity can be reduced, and a pathologist can
examine the excised node in greater detail for micrometas-
tases, particularly using specialised techniques such as
PCR, which can detect one tumour cell in a background of
one million lymphocytes, compared to one in ten thousand
for standard haemotoxylin and eosin staining [132].
Current techniques for isolating the SLN using isosulfan
blue [133] and radiolabelled dyes [134] suffer from several
significant drawbacks [135–137]. QDs provide a possibly
favourable alternative, as they can be engineered to
fluoresce in the NIR region, and can be synthesised with
an optimal size for lymphatic partitioning. Type II QDs
coated in oligomeric phosphines are used to ensure
localisation in the lymphatic system.
The first studies showed that injected QDs colocalised

with isosulfan blue, a commonly used lymphatic dye in
axillary nodes, after injection into mice [138]. Several
studies on pigs have used QDs to identify the SLN in the
pleural space [134,137], the oesophagus [139], the GI tract,
and in melanoma drainage sites [140]. They showed that
injected QDs rapidly localised to the SLN and could be
imaged at a depth of up to 5 cm in lung tissue [137].
Allowing the QDs to remain in situ for 3 h did not show
any migration beyond the SLN, or any reduction of
fluorescence. Surgeons could be provided with image
guidance with false colour QD images overlying the normal
surface anatomy on a combined image (Fig. 8). The use of
QDs allows identification of the SLN after resection, even
if it is bloody and matted, and an idea of the completeness
of resection is given. However, several studies on biocom-
patible near-IR-emitting QDs have reported a slight blue-
shift [141], a low photoluminescent quantum yield (lower
than 4%), and a broad emission greater than that of the
visible-light emitting QDs [104,119]. The other drawback
of this is the as yet unknown toxicity of QDs. The authors
suggest that as much of the QD load is partitioned in the
excised lymphatics, toxicity may be negligible, but this
certainly cannot be assumed. These studies all noted the
absence of acute effects in the pigs, but long-term toxicity
was not addressed.
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Fig. 7. (a) Projection of capillary structure through 250mm of adipose tissue after intravenous nanocrystal injection into a mouse [131]. (b) Arterial and

venous circulation visualised 40.5 s after administration of a nanocrystal bolus in a hyperinflated rat. Thoracic and abdominal regions of a mouse imaged

after injection of a nanocrystal bolus, before (c) and after (d) thoracotomy [125] (permission obtained).

Fig. 8. Esophageal sentinel lymph node mapping in pigs. Showing original colour, QD fluorescence and false-colour QD fluorescence merged with original

image [139] (permission obtained).
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5.7. Barriers to use in vivo

The value of QDs for in vivo applications is controver-
sial. Although these studies have produced some successful
results, predictable problems were noted. The size of QD
complexes limits tissue penetration [32], and instability in
biological tissues has been noted [24]. The only data
currently available comes from observation of experimen-
tal animals over the short term. Significant problems can be
anticipated. Firstly, QD complexes, including their capping
materials may be immunogenic, which could result in both
dangerous immune reactions in subjects, and could also
render the QDs ineffective as a result of antibody binding.
Secondly, the heavy metals contained in the core, and the
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materials used for capping (e.g. MPA) may be toxic to the
host. Thirdly, the size of QD complexes precludes renal
excretion, making clearance from the bloodstream un-
likely. This will result in eventual uptake and concentration
in the liver, which is particularly sensitive to cadmium
toxicity. A large number of high-quality and high powered
trials specifically addressing these issues will need to be
undertaken before QDs can be considered for human use,
and such a process is likely to be lengthy.

5.8. Tumour biology investigation

Tumour vasculature plays an important role in deter-
mining tumour pathophysiology, and drug delivery.
Combination of QD imaging with second-harmonic gen-
eration (SHG) [142], which has been used for collagen
imaging in normal and cancer tissue [143,144] has allowed
imaging of the distribution of blood vessels within the
interstitium, of which collagen is a major component [145].
Using QD microbeads of different sizes, with a different
wavelength QD embedded in each size of bead, an
assessment of tissue penetrability can be made, with
infusion of these microbeads into the tumour vasculature
showing differing distribution of the differently sized
microbeads between intravascular and extravascular com-
partments. The authors suggest that this could be used to
provide an in vivo assay for assessing drug delivery in
tumours. QDs have also been used to study tumour
cell extravasation and seeding [146], with five distinct
populations of cells being labelled and tracked using
differently coloured QDs. The role of bone-marrow
derived precursor cells in tumour vasculogenesis has also
been investigated using QDs, producing images which
showed the blood flow, rolling and adhesion of these
cells [145].

An application in which QDs might find a more
immediate application is in the assaying of cell motility,
which is widely accepted to correlate strongly with
metastatic potential [147]. One method for measuring this
involves measuring phagokinetic tracks left when cells pass
over a layer of markers and ingest them. Gold particles
have been used previously, but provide practical difficulties
in making up the substrate, and are so large that ingestion
of a relatively small amount of markers may perturb cell
motility. QDs have been investigated as an alternative, and
with substrate incorporating QDs, phagokinetic tracks
created by human mammary epithelial cells and non-
tumour cells have been observed [148].

A recent publication reports a protocol for quantitative
measurement of expression of cancer antigens in various
tumour tissues [149]. They were able to provide protein
expression measurement on a continuous scale, which they
suggest is an improvement over the current most com-
monly used Pathology Scoring method. Interestingly, they
found that multiplexed measurement of different antigens
was unreliable as a result of what seemed to be a FRET
process occurring between different wavelength QDs. QDs
may have potential for treatment as well as investigation of
cancers. Whilst the cytotoxicity of QDs has been a major
barrier to their use in vivo it may prove to be key in their
role against cancer cells. The CdTe component of the QD
structure has been shown to produce reactive oxygen
species which activates Fas R, a tumour necrosis factor,
inducing apoptosis and cell death [150]. Although this has
not been investigated, this could be used to provide
therapeutic options in cancer treatment.
6. Discussion and conclusions

A number of useful results have been generated using
QDs, particularly in the field of single-molecule tracking,
where their long fluorescence lifetime and photostability
are particularly advantageous. Multiplexed imaging for
which QDs could provide ideal probes, is also attractive
for a host of applications, and presents an opportunity for
significant progress in many fields. There has been
speculation over possible uses of QDs in a large number
of applications, but care must be taken not to be overly
optimistic, as a number of important problems have not yet
been solved, and QD behaviour has yet to be fully
characterised.
A number of significant barriers prevent widespread

uptake of the technology at present. There is evidence of
cytotoxicity and alteration of cell function, and of the
function of molecules labelled by QDs. The large size of
QDs relative to current fluorophores reduces their ability
to access and label cellular molecules, and may reduce
tissue penetration on a larger scale. Uncertainty over the
toxicity and fate of QDs in vivo, particularly regarding
distribution and breakdown precludes their use in human
applications until much more data is available. In addition
to this, many fundamental characteristics of their surface
chemistry and physicochemical properties in varying
situations are poorly understood. Many assays incorporat-
ing QDs, particularly those based on immunofluorescence
have been reported to be less sensitive than other assays.
Whether this is due to inherent weaknesses in the assay
design or antibodies used, or the result of the incorporation
of QDs, requires further investigation.
The superior optical properties of QDs compared with

currently used imaging molecules are indisputable, and the
studies presented here have shown that QDs do have
potential for usefulness in a number of areas. However,
only when the significant concerns apparent have been fully
addressed will it be possible to make a considered
judgement on the applications into which they can usefully
be incorporated.
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